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Abstract This article originated as a lecture at the Statistical Seismology V meet-
ing in Erice, Italy which was held in 2007. This lecture sought to define the role
for statistics and stochastic models in furthering our understanding of earthquake
processes and in solving practical problems related to earthquake occurrence. Given
the importance of such tasks in our field, the lecture concluded with some comments
on how to include statistics in the education of seismologists and some comments
on future perspectives for this field.

1 Stochastic and Physical Models
1.1 Introduction

Some three decades ago, in 1979, I was asked to write an account of statistical
modelling of earthquake occurrence in time and space (Vere-Jones 1979).

Those three decades have seen great changes. Earthquake prediction has flowered,
withered, and begun to flower again, albeit with a more cautious tone. We now have
access to data of a scale and quality that would have been hard to anticipate 30
years ago, just as we have computing devices of a power and speed that would have
been equally hard to anticipate.

In particular, the explosion of extensive, high-quality seismic data is a major
reason behind the current increased interest in Statistical Seismology.

At just such a stage, it seems important to ask, as I was asked then, what is
the purpose of stochastic modelling, in what has been traditionally viewed as an
observational science, and how effective is it?

If Statistical Seismology is taken to mean the application of stochastic modelling
ideas to Seismology, then this question is just a challenge to clarify the principles
and purposes of Statistical Seismology itself.

1.2 What is a stochastic model?

The fundamental difference between a physical and a stochastic model, is that while
the physical model seeks to understand and predict the process fully, the stochastic
model accepts that some aspects of the physical process are out of range, at least
for practical purposes, and must be replaced in the model by some unknowable and
hence random process.

The main reason for making the uncertainties explicit, for building them into the
model, is that it is only in this way that we shall be able to quantify the variability
in the predicted outcomes.

The resulting stochastic model should reproduce those aspects of the physical
phenomenon which are relevant and accessible to measurement, but may relegate


http://www.corrsa.org/glossary/#stochastic
http://www.corrsa.org/glossary/#random

4 WWW.COrssa.org

the rest to dice-tossing or one of its contemporary avatars such as Brownian motion
or the Poisson process.

1.3 Stochastic does not mean non-physical

However, just because a stochastic model treats some aspects of the process as
random, that does not mean it is devoid of physical content.

More than three decades before my 1979 paper, Sir Harold Jeffreys (1938), who
was a pioneer in inferential statistics (e.g., Jeffreys 1998) as well as in geophysics,
argued that, to be worthy of its name, every physical theory should contain within
itself the means not only of predicting the relevant quantities, but also of predicting
their uncertainties.

In our terminology, he was arguing that every physical theory should be based
on a stochastic model.

But in adding to the theory the requirement that it should be capable of predict-
ing the uncertainties, you do not take away the physics. You just add to it a further
and often discomforting dimension.

1.4 Where does geophysics lie?

In classical physics, the uncertainties in the model are traditionally attributed to
nothing deeper than observational errors. In quantum physics the situation is totally
reversed: the uncertainties reflect a fundamental characteristic of the universe.

Geophysics, at the present time, occupies an uncomfortable middle ground.

General patterns of behaviour may be predicted qualitatively from physical the-
ories, but the theories do not extend to the prediction of specific earthquakes.

Our uncertainties include observational errors, but are by no means restricted to
them.

A more fundamental difficulty is that we have only indirect observations on the
physical processes taking place locally within the earth’s crust. The processes them-
selves are complex, and for the present time out of range of direct observation.

Stochastic models of earthquake occurrence must somehow marry the limited
physical theory to the limited data that bears directly on questions such as the
initiation of a rupture and its development into a large-scale earthquake.

Under such circumstances, the requirement of being able to quantify the uncer-
tainties in the model predictions represents a major and formidable challenge.

I believe it is fundamentally for this reason that the stochastic models that have
been produced often appear to reflect the physical picture in such a limited way.
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The underlying question for the geophysicist, then, is, “ how can the observa-
tions and the physical picture be extended to allow a better quantification of the
variability?”

2 Different roles for stochastic models
2.1 Two broad roles

Across their diverse fields of application, two broad roles for stochastic models may
be distinguished.

The first is epitomized by statistical mechanics. Here the stochastic model plays
an integral role in understanding the physical processes themselves.

In the second, by far more common, type of application, the stochastic model is
used as a basis for planning, prediction or decision-making.

In this case, whether or not it fully represents the physical processes may not be
the crucial aspect.

On the other hand, in such applications it is usually vital to know, not just a
forecast value, but also its reliability. It is also vital that the model can be fully
fitted to the available data. There is little practical use in having an excellent model
which relies on information that cannot be accessed from the available data.

In my earlier paper I distinguished three broad classes of models, splitting the
second class above into two: descriptive models and engineering models. Although
I no longer like the terminology, I would like to examine each class briefly as it
pertains to Seismology.

2.2 Descriptive models in Seismology: the G-R law and Omori’s Law

The aim in a descriptive model is to provide a recipe for simulating data with the
same broad features as those of the actual data.

In general, the simpler the model that will produce this effect, the more likely it
is to be helpful.

Within Seismology, the canonical example would have to be the Gutenberg-
Richter frequency-magnitude law. From the outset its purpose was purely descrip-
tive, but the description took a left-hand turn.

Gutenberg and Richter, following a common habit among the physicists, first
described their data in terms of numbers rather than proportions.

Then they used logarithm tables to base 10.

Finally they fitted a least squares regression line to the resultant numbers, thus
obtaining

lOgloN(M) =a+ b(M — M()) -+ EM,
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or equivalently
N(M) — 1Oa+b(M—M0)+EM ]

N(M) here is the number of events in the data set which have magnitudes above
M, M, is a magnitude threshold, and FE); is an error term which, to quote Harold
Jeffreys once more, ‘is quickly forgotten or altogether disregarded in physical theo-
ries.’

The tragedy to a statistician is that it is not a regression problem at all.

Just think how different elementary text-books in seismology might appear if
Gutenberg and Richter had phrased their discovery in terms of proportions rather
than numbers, and in logarithms to base e rather than to base 10. Then they would
have obtained

log[P(M)] = e~ #01-0),

where (M) is the proportion in the data set above magnitude M.

In this formulation, their discovery would have been clearly recognizable as a
simple descriptive model for the distribution of magnitudes.

The pseudo-parameter 10 disappears, being revealed as nothing more than a
normalization constant (the total number of events above the threshold magnitude).

Moreover the term FE); is nothing like the error in a regression problem, but a
quantity proportional to the discrepancy between the true and empirical distribution
functions at the point M, a beast of a totally different character.

In my view, anyone pretending to the title of an up-to-date seismologist should
be required on oath to forsake the use of the traditional form of the G-R law (other
than in its historical context) and to persuade their colleagues to do likewise, to rid
both text-books and current practice of a misleading anachronism.

Note that the model at this stage is purely descriptive. It is an empirical relation-
ship. The reasons why the distribution should be exponential are nowhere related
to a physical theory.

The second obvious example of a descriptive model is the Omori Law, at least
when described, as suggested by Jeffreys (1938), as a Poisson process with time
dependent rate of the form

A(t) = Alc +1)77,

where A, ¢ and p are parameters and ¢ is the elapsed time since the main shock.
This model is perfectly adequate for simulating a set of aftershocks with the same
broad characteristics as a real set of aftershocks, and allows estimates to be made
both of the parameters and of any predictions based on the model.
It may not fit an individual afershock sequence as well as the Epidemic Type
Aftershock Sequence (ETAS) (Ogata 1998) model, but in neither case is there is
any explanation of why the power law form should be followed.
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The ETAS model itself lies somewhere in-between classes. Primarily it is descrip-
tive. Its components include:
- the G-R law (descriptive),
- the Omori law (descriptive)
- the exponential productivity law (descriptive),
- the spatial distribution of aftershocks (descriptive).

The only feature that (to me) has a conceptual rather than a descriptive ba-
sis is its branching structure: each event, whether background event or aftershock,
produces offspring events according to the same formula.

2.3 Engineering (Utilitarian) Models

By this I mean models produced in order to answer a particular practical question
in some planning, decision-making,or forecasting context.

There is broad overlap between such models and descriptive models The main
difference is in the purpose of fitting the data. In a descriptive model the main
purpose is simply to describe the data effectively. In an engineering model we want
to put the model to some specified use.

Traditional uses of such models in seismology have been those relating to earth-
quake zoning, earthquake engineering design, and earthquake insurance.

But the major category now comprises models for probability earthquake fore-
casts.

The tasks are clear. They cannot be undertaken without stochastic models. The
question is whether the existing models are appropriate for the tasks to hand.

In formulating a stochastic model for any such practical purpose, some rough
guiding principles can be helpful.

1. The level of detail of the model should match the purpose in view. There is no
purpose in modelling detail that is not needed. Moreover a simple model is likely
to be more helpful than a complex one in understanding and communicating the
issues involved.

2. The model must be able to be estimated from the available data. There is
no point in an excellent model that relies on unavailable data. This may mean
restricting the number of parameters. Commonly, 20 or 30 independent observations
per parameter are needed to estimate each parameter even to moderate accuracy,
although in detail the required number of observations may vary hugely.

3. Even though following the physics may not be the main aim, a model which
is based on a good, if simplified, physical picture, is likely to be safer for prediction
than a model which is purely descriptive or ad hoc. A descriptive or ad hoc model
just cannot be trusted outside the range of the data to which it has been fitted.
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I see two broad situations in seismological studies where the models have this
general character.

2.3a: Analysis of data from an individual fault or a historical catalog
Renewal, time-predictable, slip-predictable (Shimazaki and Nakata 1980) and stress-
release (e.g., Kagan and Knopoff 1987) models fall into this general picture. They
have some physical plausibility, enough to satisfy (3) above, but their practical
purpose is to provide estimates of the hazard on a given fault.
Point (2) is particularly relevant because the data is generally very meagre.
There is also a need to be careful with the model formulation to avoid internal
inconsistencies. For example, one possible version of the time predictable model is

logT; = A+ M; + ¢ (1)

where the T; = t;,1 —t; are the times between events, the M; are their magnitudes,
and the ¢; are normally distributed errors.

The natural assumption of independent errors leads to a contradiction with the
supposed boundedness of the stress level in time: without some negative correlations
the fluctuations will increase beyond bound.

In the stress release model, instead of there being a fixed critical stress, the critical
stress is treated as variable, having distribution function @(s) with density ¢(s). The
probability that the next earthquake occurs when the stress passes through S, 5405,
but not before, is then given by

¥(S) = ¢(5)/[1 — 2(5)],

i.e. by the hazard function of ®.

In applications, ¥(S) is commonly take to have an exponential form ¥(S) =
Ae* | corresponding to the distribution function ¢(S) = 1 — e~ A =11 which for
A << 1 has a sharp peak at (—log A)/A. The stress-level is now Markovian, and
the inconsistencies with the earlier model are avoided.

2.3b: Models for background seismicity

The other group of models that play a somewhat similar role in a different context
are the models for background seismicity such as the ETAS and Kagan-Jackson
(Kagan and Jackson 1994) models.

The ETAS model has an important branching process interpretation, and is
widely used as a basis for data-fitting, investigation of model properties (foreshocks,
Bath’s law) and as a diagnostic tool for revealing regions of anomalous seismic ac-
tivity.

The Kagan-Jackson model was expressly designed for the purpose of providing a
base-line model more realistic than the Poisson model but still simple.
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The EEPAS model (Rhoades and Evison 2004) adds to the Kagan-Jackson model
explicit prediction terms taken from logarithmic regression studies.

All three models can be defined by conditional intensities of deceptively similar
form. For the full (space-time) ETAS model (Ogata 1998),

Mlt M) = FOD{p(@) + A 5 800 = Mo)glt — t)hla —z) | (2)

Bt <t

For the Kagan-Jackson (1994) model,

Nalta, M) = FODRD{+ 4 3 gl — )}

ity <t
For the EEPAS model, (Rhoades and Evison (1994)

As(t,x, M) = pXo(t,x, M) + Z f(M — M)h(t — t;|M;)g(x — ;| M;), (3)

t;<t

In these expressions f, g, h are all normalized to be probability densities, while
f(M) is the G-R law or one of its variants.

Here the similarities end.

@ in the ETAS model is an exponential productivity term. It has to be balanced
against the G-R term to determine the conditions for criticality. p governs the
background (independent) events and sets the overall spatial pattern. There are
simple conditions for the existence of a stationary version, and when simulated from
given initial conditions the model converges to its stationary form (ergodicity).

In the Kagan-Jackson model, the constant A; is adjusted each time a new earth-
quake is added to the sum, to ensure that the total contribution from the bracketed
term is unity and hence that h(t) continues to denote the overall rate. When sim-
ulated, the model behaviour is heavily dependent on the initial condition, and the
role of the ‘surprise events’ controlled by . It is not clear whether it can be linked
to a stationary point process model, even if A is constant, and if so whether that
model would be ergodic.

In the EEPAS model, )\ is first obtained from a model similar to the Jackson-
Kagan model. The terms f, g, h in the sum are taken from logarithmic regression
studies of the ratios of the seismic moment, time and space coordinates of an initial
event to those of the events it anticipates. Again the model involves sequential
renormalization, and it is not clear whether it can be associated with a stationary
point process model.

Despite their varied backgrounds, all three models are successful in fulfilling what
is required of them. However, they raise many further questions about the nature
of the seismic regime and the models by which it can be represented.
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2.4 Conceptual models

I mean here models that not merely describe but help to explain some physical
phenomenon, as do the basic models in statistical mechanics.

Statistical models of somewhat this character have long played a role in the study
of fracture mechanics, from the time of Weibull (1939) on.

Weibull, for example, attributed the variations in strength from otherwise sim-
ilar laboratory specimens to the random distribution of microcrack lengths in the
specimen. The Weibull distribution takes its name from his studies.

The branching process, percolation, and cellular automata interpretations of
the earthquake process start from the underlying idea that, instead of progress-
ing smoothly, as would a fault or fracture in a homogeneous elastic medium, the
progress of an earthquake rupture is controlled by its essentially random progress
from one weakness to another.

My own interest in this area revolved around the application of branching process
ideas, leading to a stochastic model which predicted a G-R law with b-value around
2/3 in the critical case, and to tapered Pareto distributions (‘Kagan distributions’)
when the process is subcritical.

It is remarkable that the same branching process concepts reappear in the ETAS
model, lending credibility to one of Yan Kagan’s old theses, that the distinction
between the rupture itself, and the intervals between ruptures, are due more to the
limitations of our perceptions and our recording instruments than they are to the
physical processes.

It is also of interest to compare the roles of stochastic models for earthquake oc-
currence, such as the ETAS model or the branching model for fracture, with models
for complex systems, whether stochastic, such as cellular automata, or deterministic,
as in block-and-slider and many other mechanical models for fault systems.

Under a wide range of conditions, many such models show characteristic features
of earthquake occurrence: a G-R law, long-range correlations, aftershock sequences
and a form of Omori Law, etc. In this sense there may be no overriding reason for
choosing one type of model over another.

Each provides a different type of insight into the circumstances under which
these features can be produced. The merit of models such as the branching model
for crack propagation, in my view, lies in the extent to which they can explain a
complex phenomenon from simple premises.

I don’t see much point in modelling a complex physical phenomenon by a model
whose complexity approaches that of the original phenomenon, particularly when
both may be adequately predicted by a simple statistical model.
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3 On the statistical education of a geophysicist

In another early paper, I bemoaned the lack of time given to statistics courses in a
typical degree programme in geophysics.

Traditional applied mathematics, physics, chemistry, geology - all these make
up a really crowded programme for a geophysics student. And there is no time for
statistics.

Until, that is, the student embarks on a project or thesis, when he or she is faced
with the harsh realities of life in the form of a stack of observational data requiring
interpretation, display, and the drawing of some kind of statistically legitimized
conclusion.

There may be worse ways of learning statistics than being pitched in at the deep
end. But it seemed a pity thirty years ago, and even more of a pity now if it is still
true, that no serious attempt is made to incorporate statistics into the geophysics
degree programme.

The advent of new and improved data, the growing interest in probabilistic fore-
casting and time-independent /time-dependent hazard estimation, the powerful com-
puting facilities now available to handle simulation and optimization techniques, all
these point to a need to reassess the priorities, and to open up some pathway to
inculcating a more mature form of statistical thinking among geophysics and espe-
cially seismology graduates.

However I emphatically do not advocate compulsory attendance at a cookbook
statistics course. Many such courses are an insult to a mathematically literate stu-
dent, and many geophysics students are more than a little mathematically literate.

Rather, the aim should be to acquaint students with the basic style of statistical
thinking - probability models, their link to data, checking properties by simulation.
Some familiarity with basic distributions and classical statistical tests will ultimately
be needed, but is relatively easily learned. Familiarity with the basic style of thinking
is harder to teach and more important.

My suggestions for a half-year course at around third year level might be some-
thing like this:

1. Take advantage of the modern statistical software which includes excellent
techniques for displaying data in many different forms. The importance of effective
data display should be lesson 1.

2. The concept of a statistical model is best taught through simulation, generating
random numbers according to the model specifications, from independent random
samples to samples showing simple forms of chaining or dependence.

3. The empirical laws of seismology, and comparisons between actual and sim-
ulated data, offer plenty of scope for instructive and even rewarding discussions of
statistical inference including both estimation and model testing. The aim in the
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latter should not be unquestioned obedience to 5% t-tests, but some understanding
of the universal problem of trying to determine when a signal stands out above the
noise.

4. Some introduction to simple stochastic processes, especially branching pro-
cesses, simple Markov chains, autoregressive (AR) models in time series.

At the MSc level and beyond, when it comes to training students to move into
a field such as statistical seismology, there is a question as to whether one is look-
ing to convert statistical graduates into seismologists, or geophysics graduates into
statisticians.

As a general rule, it is easier to do the mathematics (here I mean the statistics)
first, and the more applied subject later, but both routes are possible.

I have found it easier to interest statistics students in seismology than seismology
students in statistics. But the statistics students do not proceed far with seismology
because they are lured away into careers in finance and the like.

The seismology students, on the other hand, fail to see in statistics a subject that
warrants their attention when they could alternatively be going on enjoyable field
trips in their own subject.

In any case, some attempt should be made to capture the interest of suitable
students while they are still young enough to be impressed by challenges and ideas.
Statistical seismology is surely an area where there is still important and exciting
research to be done.

4 Conclusions and future perspectives

In this lecture I have enjoyed the opportunity to indulge my own prejudices and
opinions.

I have tried to make, yet again, the case that stochastic models should not be
seen as alternatives to physical models, but as extended versions of the physical
models in which an attempt is made to explain the variability, or uncertainties, in
the observations, as well as their basic causes.

At the same time stochastic models come in a number of guises and serve a num-
ber of purposes. These are likely to be more closely linked to physical considerations
in some cases than in others.

— Descriptive models are no more or less than what they claim to be: a simplified
description of the data.

— The majority of models, my so-called ‘engineering models’; are there to answer
practical needs and should be judged in the first instance on whether they succeed
in their stated tasks.
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— Finally there are the more conceptual models, in which the aim is not only to
describe but also to explain and understand the processes underlying some physical
phenomenon.

The role of statistical modelling ideas in seismology has increased to the stage
where more serious attention should be given to the possibility of incorporating
some serious statistical courses in the undergraduate and postgraduate statistical
programmes. Better later than earlier, I think, and with the emphasis on statistical
modelling, not on cook-book recipes.

In the meantime there is no shortage of new and important questions looming in
statistical seismology. Let me just mention a couple of my own interests by way of
somewhat far-out examples.

A few years ago I found a rigorously self-similar modification of the ETAS model,
and suspect there may be a similar version of the EEPAS model.

There may be some way of linking these self-similarity ideas with the discov-
ery, a few years ago by Brémaud and Massoulié (2001), of versions of the Hawkes
(ETAS-type) processes, which run in the critical regime but without immigrants. It
is possible that the Jackson-Kagan type models are linked to these.

I now believe that there may be some mathematical paradigm of the earthquake
process which is exactly self-similar, and self-perpetuating. Five years ago I would
have thought this ridiculous, but now I feel that nature may have beaten us to it in
suggesting a remarkable new mathematical model.

Finally, the ‘rate and state’ friction ideas of Dieterich (1994) seem to me to invite
incorporation into a rigorous stochastic model, but the best way of setting up such
a model is not yet clear, at least to me.
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